Received 25 January 2007

Accepted 26 January 2007

Acta Crystallographica Section E Structure Reports Online

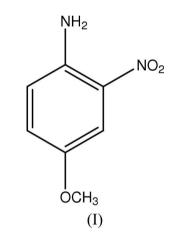
ISSN 1600-5368

4-Methoxy-2-nitroaniline

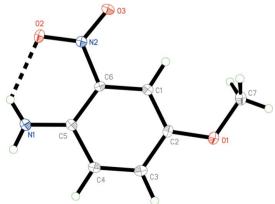
Mohd Mustaqim Rosli,^a P. S. Patil,^b Hoong-Kun Fun,^a* Ibrahim Abdul Razak^a and S. M. Dharmaprakash^b

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bDepartment of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India

Correspondence e-mail: hkfun@usm.my


Key indicators

Single-crystal X-ray study T = 100 KMean $\sigma(C-C) = 0.001 \text{ Å}$ R factor = 0.033 wR factor = 0.104 Data-to-parameter ratio = 13.6


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The title molecule, $C_7H_8N_2O_3$, lies on a mirror plane with two of the methyl H atoms related by mirror symmetry. The crystal structure is stabilized by intermolecular $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds.

Comment

Nitroaniline-based compounds were reported to have bulk non-linear optical (NLO) properties (Zyss, 1993). We report here the crystal structure of the title compound, (I) (Fig. 1), which crystallizes in the centrosymmetric space group *Pnma*.

Bond lengths and angles in (I) have normal values (Allen *et al.*, 1987). Except for two symmetry-related H atoms of the methyl group, all atoms lie on a crystallographic mirror plane. An intramolecular $N-H\cdots O$ hydrogen bond is observed between the amino group and the nearby nitro group. In the

Figure 1

The molecular structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering. A dashed line indicates the intramolecular $N-H\cdots O$ hydrogen bond.

© 2007 International Union of Crystallography All rights reserved

organic papers

crystal structure, molecules are linked by intermolecular N– $H \cdots O$ and C– $H \cdots O$ hydrogen bonds (Table 1), forming an infinite two-dimensional network in the crystallographic mirror plane (Fig. 2).

Experimental

Commercially available 4-methoxy-2-nitroaniline was further purified by repeated recrystallization from acetone. Single crystals suitable for X-ray analysis were grown by slow evaporation of an acetone solution at room temperature.

Crystal data

 $C_7H_8N_2O_3$ $M_r = 168.15$ Orthorhombic, *Pnma* a = 16.0264 (4) Å b = 6.3621 (1) Å c = 7.1476 (1) Å V = 728.78 (2) Å³ Z = 4 D_x = 1.533 Mg m⁻³ Mo K α radiation μ = 0.12 mm⁻¹ T = 100.0 (1) K Block, orange 0.34 × 0.25 × 0.20 mm

13427 measured reflections

 $R_{\rm int} = 0.023$ $\theta_{\rm max} = 31.5^{\circ}$

1309 independent reflections

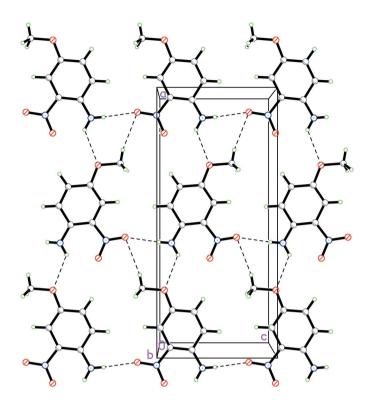
1180 reflections with $I > 2\sigma(I)$

Data collection Bruker SMART APEX2 CCD area-

detector diffractometer ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{\min} = 0.873, T_{\max} = 0.976$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0635P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.033$	+ 0.1408P]
$wR(F^2) = 0.104$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.08	$(\Delta/\sigma)_{\rm max} = 0.001$
1309 reflections	$\Delta \rho_{\rm max} = 0.48 \text{ e} \text{ \AA}^{-3}$
96 parameters	$\Delta \rho_{\rm min} = -0.32 \ {\rm e} \ {\rm \AA}^{-3}$
All H-atom parameters refined	Extinction correction: SHELXTL
	Extinction coefficient: 0.007 (2)


Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H1N1···O2	0.86 (2)	2.06 (2)	2.640(1)	125 (2)
$N1 - H1N1 \cdots O1^{i}$	0.86 (2)	2.43 (2)	3.054 (1)	130 (2)
$N1 - H1N2 \cdot \cdot \cdot O3^{ii}$	0.81 (2)	2.20 (2)	3.005 (1)	176 (2)
$C7-H7A\cdots O3^{iii}$	0.88 (2)	2.59 (2)	3.461 (1)	169 (1)

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, -z + \frac{1}{2}$; (ii) x, y, z + 1; (iii) $x + \frac{1}{2}, -y + \frac{1}{2}, -z - \frac{1}{2}$.

All H atoms were located in a difference map and refined isotropically. The C-H distances lie in the range 0.88 (2)-1.01 (2) Å.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *APEX2*; data reduction: *SAINT* (Bruker, 2005); program(s) used to solve

Figure 2

The crystal packing of (I), viewed down the b axis. Hydrogen bonds are shown as dashed lines.

structure: *SHELXTL* (Sheldrick, 1998); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2003).

The authors thank the Malaysian Government and Universiti Sains Malaysia for the Scientific Advancement Grant Allocation (SAGA) grant No. 304/PFIZIK/653003/ A118. PSP thanks DRDO, Government of India, for a Junior Research Fellowship (JRF).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Zyss, J. (1993). Molecular Nonlinear Optics: Materials, Physics, and Devices. New York: Academic Press.